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Abstract

For the superimposing of the diffusive flows — ordinary diffusion and molecular motion — with a frictional, i.e.
viscous flow, several models have been proposed. In the continuum region and in the Knudsen region the models are
identical. They are different however in the transition region 1 < Kn < 0.01. A description of the effects in this region
has to take into account: pressure diffusion, slip flow and diffusion slip. It will be shown that only the model of parallel
connection of ordinary and pressure diffusion on the one side and the concentration and the pressure term of molecular
motion on the other side is physically plausible in the transition region. For this approach it is necessary to consider
the convective compensation flow caused by the diffusion for a viscous frictional flow. On this basis an equation for
the diffusive flow in the whole range of Knudsen-numbers will be derived, which includes the above-mentioned

effects. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Diffusion in the continuum region

Within a porous structure in the continuum region —
Kn < 0.01 — a gradient of concentration Vy causes an
ordinary diffusion. For binary gas mixtures the relative
diffusion fluxes therefore, are described [1] by
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with (¢/p) = 1/RT and the effective diffusion coefficient
Diy = D,/ .

By diffusion with constant pressure a compensation
flow is formed resulting in a bulk motion of the fluid
because the velocities of diffusion for the components
are different. The total diffusion fluxes can be written as
the sum of the relative fluxes and the bulk flow [2]
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In these equations a separation factor is introduced,
o= Ndim /Ndif,]. It must be determined from the
boundary conditions of the system, e.g. countercurrent
diffusion, o = —Dy,»/Dg,1 (Grahams law) or for diffu-
sion through a stagnant film, o = 0. Only for « = —1 in
case of equimolar diffusion in a closed system and
Vp =0, there is no bulk motion of the fluid (gas).
However, if we describe the bulk motion in Eq. (2)
(N3, + NgJ,) as a frictional viscous flow with Darcy’s
law [3]

. . () c . kj
Ny +N§Yy = =Dy (;)Vp with Dy, = f (3)

or by laminar flow in pores with a mean diameter d,
with Dy;s = (d2p/32n) we get a relation for the pressure
gradient needed to dissipate the compensation flow
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or with a dimensionless ratio of the gradients
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Nomenclature T absolute temperature (K)
X ordinate (m)
¢ molar density (kmol/m”?) v mole fraction
d, pore diameter (m)
D* transport coeflicient in the free space (m?/s) Greek symbols . -
D, effective binary diffusion coefficient in the gas o separation factor N>/N
(m?/s) A mean free pa.th of the gas molecules (m)
Dy,; effective equivalent diffusion coefficient for Hi ratio Of, relative mole masses, M, — Mi/Mu
molecular motion (m?/s) Hp tortuosity factor
Dyis  effective equivalent diffusion coefficient for n dynamic viscosity (Pa s)
. viscous flow (mz./s) Indices
J mglar flux relative to the mass average vel- i,1,2  components
ocity (kmol/(m’ 5)) dif  flux due to ordinary diffusion
k permeability (m) Kn flux due to molecular motion
Kn  Knudsen number (A/dy) vis flux due to viscous flow
M molecular weight (kg/kmol) 0 by pressure po
N molar flux relative to stationary coordinates
(kmol/(m?s)) Superscripts
P pressure (bar) p flux due to pressure gradient
pi partial pressure of component i (bar) y flux due to mole fraction gradient
R gas constant (J/(kmol K)) " by saturation or on x =0
s length of diffusion path (m) ! in the gas or on x = s
Y= ﬂ (5) Dyis = Dyisg 37 Dy, = D12,0@»
(1-y)Vp P p

1 —y(l =+ O() Dvis

= (1=y)(1+a) Dy’

In the continuum region — Kn < 0.01 — the equivalent
effective diffusion coefficient for the viscous flow, Dy, is
much greater than the ordinary diffusion coefficient D,
(cf. Fig. 2) so that a pressure gradient in the continuum
region is to be neglected: Vp ~ 0.

In case of diffusion through a stagnant film (one-side
diffusion) there is N&i”f)‘z =0, resp., o = 0 and we get from
Eq. (5) for the ratio of the gradients

D vis

Y= .
Dy,

(6)

The integration with the boundary conditions, Fig. 1,

/! /
)C:O:y:y”:p—l7 x:s:y:y/:&
Dr=0 Po

results in the pressure p,_o on the place where the dif-
fusion flux is generated, e.g. the surface area of the fluid
by evaporation. This is an implicit equation

S\ 1 ;o\ /-1
px_o_(l—y)/_(po—pl)/( ) )
Po 1=y Peo — P
If additionally the pressure dependence of the diffusion
coefficients would be considered:

D vis D. vis

i.e. =
DlZ DIZ

(2)

the integration of Eq. (6) results in

x= x=0 T 4 1 x=l ?
B0 PO TP o | 20, (” 0) —1]|. (8)
Po Po— P 2 Po

The numerical interpretation shows only a small effect of
the pressure dependence (max —4%). In the following
this influence will be neglected.

The diffusion flux of component 1 through a stagnant
film — only this case will be considered afterwards in this

N
D1
x=s, p=p,
P,=Pp,
X
\V4 TX=0, P=p,_,
P,=p;

Fig. 1. Boundary conditions by diffusion through a stagnant
film N, = 0 — one-side diffusion.
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paper — now can been calculated with the aid of Egs. (3)
and (6) to be:

c c
—Dlz(*)PVy—Dvis(*)yVP
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For the integration of Eq. (9) the function p = f(y) is to
be determined. This can easily be done with the aid of
Eq. (5) and Eq. (6)
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Eq. (10) introduced into Eq. (9) yields

o) c\ (1=
Ngry = —Dn <;> WpoVy

and after integrating we get
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The mol-fractions y' and y” are given from Eq. (7) by
v P
»’ Pe=o

In the limiting case of the continuum region the relation
¥ will be ¥ — oo and for the diffusion flux through a
stagnant film (one-side diffusion) we get the well-known
equation

Dy 11—y

Ngf)‘l :Tcolnq. (12)

The ratio of the diffusing fluxes according to Egs.
(11) and (12) is shown in Table 1. One can see that the

Table 1

influence of the frictional viscous compensation flow is
very small compared with the flow without friction. At
first, caused by high vapor pressures p; and values of ¥
near the transition region (J = 10, Kn = 0.035 we are
already in the transition region), the influence on the
diffusion flux is remarkable.

By a pressure gradient Vp in a gas- or fluid-mixture
in a porous structure beyond the viscous flow, a pressure
diffusion becomes possible. For ideal gases the rate of
the diffusion flux [1,6] can be written

. c
N, = —uDy (;)yin (13)

with y; being the ratio of the molecular weights of the
components in the mixture

P :MIZ_MI :(1—y)(M2—M1)
! My, M, ’
P :MIZ*MZZ*,V(MZ*MI)
: My My ’

In the foregoing section it was shown that the pressure
gradient generated by the ordinary diffusion in the
continuum region is very small. Therefore, a flux by
pressure diffusion is to be neglected, too. By the pressure
increase in the transition region, however, the pressure
diffusion will get remarkable. In the Knudsen region the
pressure diffusion turns into the pressure term of the
molecular motion N}{:f,i, just like all other terms change
over to the corresponding terms of the molecular motion
(see below). Certainly, if an external pressure gradient is
imposed, like centrifugal forces in a gas-centrifuge, e.g.,
only then the pressure diffusion is the dominating
transport mechanism.

The fluxes by ordinary diffusion, by pressure diffu-
sion and viscous flow are allowed to be directly added.
Effects of linkages are not relevant, because the various
flows are proportional to gradients (linear laws), and
these quantities of different tensorial character do not
couple in the linear approximation in isotropic systems
(Curie’s theorem) [2].

Influences of p{/py and 9, resp. Kny at the pressure rise p,—o/py and diffusion flux Ndif,] in the continuum region

g PV Na (lfy’)w_1 [lnlfy’y1
(1=»)VDP’ Narapo 11—y -y

P! /o 0.1 0.3 0.5 0.7 0.9
9= 1000; Knp = 3 x 10~ Peo/Po 1.0001 1.0004 1.0007 1.0012 1.0023
Nait.1/Nait 10 1.0000 0.9997 0.9994 0.9983 0.9923
9 = 100; Kny = 1 x 102 Peo/Po 1.0011 1.0036 1.0069 1.0118 1.0215
Nair1 /Nait 110 1.0000 0.9974 0.9936 0.9834 0.9345
9 = 10;Kny = 3.5 x 102 Peo/Po 1.0105 1.0348 1.0654 1.1055 1.1610
Nair1 /Nait110 0.9939 0.9764 0.9437 0.8762 0.6991




4720 W. Kast | International Journal of Heat and Mass Transfer 44 (2001) 4717-4724

2. Molecular motion in the Knudsen region

In the Knudsen region Kn > 1 only the impulse of the
gas- or vapor-molecules against the wall of the pores
dispose of the mass transfer. Diffusion and bulk flow
turn into the molecular motion. Fig. 2 shows the true
equivalent diffusion coefficients (without tortuosity fac-
tors) as function of the pore diameter and of the
Knudsen-number Kn = A/d,, resp. With the equivalent
diffusion coefficient for the molecular motion

4.d RT
DKn,i = § £
My V 27M;

(14)

the mass transfer occurs due to the free molecule flow:

. c c
Ngn1 = — Dgn (*)va — Diin,1 <*)pr
p p

C
- DKn.l (_)vplv
p

. c ¢
Nin2 = + Dxup (—)PVJ’ — Dk (—) (1-»Vp
p p

fDK,,‘z(;>Vp2. (15)

The partial-pressure gradients in Eq. (15) are defined by
Vpi =pVy +yVp, Vpr=-pVy+(1-y)Vp
Eq. (15) reveals that the fluxes Nx,; consist of the parts

N,g{i ~ Vy and N,g{, ~ Vp. A superimposed bulk-flow,
like the compensation flow by diffusion, is impossible.

10  Knudsen-region transition- ‘ continuum-region

~<—Kn

. .
4 10° 10
—dp

T
10”

10°° 108 107 108 10° 10 10° 102
Fig. 2. Equivalent diffusion coefficients for H,O-vapor-air in a
stagnant film (o = 0); ordinary diffusion D),, molecular motion
D, viscous flow Dy, without tortuosity, for py =1 bar.

The separation factor o

Vicn2 _ +DKn,2 Vo Diapr pVy—(1—y)Vp

" Newt Dgut Vo1 "Dy pVy+yVp

(16)

is valid in the continuum region as well as in the
Knudsen region, as shown by other theoretical and ex-
perimental investigations [2,5].

From Eq. (16) the pressure gradient Vp created in the
Knudsen region and the appropriate ratio 9, resp., is
calculated by

pVy (1 = »)(Dn2/Dins) — yer

V=%~ (1= ) Dsna/ Dy 7 9) (17)

One-side transfer, i.e. evaporation, through a porous
medium requires a pressure gradient, corresponding to
Eq. (15) for Ng,, =0 or to Eq. (17) for a =0
pVy
Vpr=-—pVy+(1—-y)Vp=0—-d=——"—=1
p2=—pVy+(1-y)Vp 1—»)vp
(18)

This result already can be derived from Eq. (6), if the
flow and the diffusion change over to the molecular-
motion in the Knudsen region: D, Dy — Dg,;. The
molecular flux by one-side transfer Ng,; now can be
calculated with Eq. (15) and the condition following
from Eq. (18):

NKn‘l = 7DKn‘l (;)(pvy+yvl7)
c 1
- DKn‘l (;)pv)’<l + 1 y 5)
¢\ PVy
= —Dgn1| — | 57——. 19
K'l(p)l—y (1)

The function p = f(y) is to be calculated by an inte-
gration of Eq. (17) for o« =0
p_1-Y _pp—p

p 1=y pop—p

or p=py+ (p —p))- (20)

For the pressure at x = 0 it follows
SIS (21)

P—o=po+ (p{ —p}) or
0 0 (P1 l) Po Do

which is a relation independent of ) and valid in the
whole Knudsen region. Inserting Eq. (20) into Eq. (19)
we can write

~ c\ (1-))Vy
Nini = —Dgui | — |Po——"—"75—
Kn,1 Kl(p) 0 (l—y)z

and after integrating between the boundary conditions
(cf. Fig. 1)

"o p/lr/pO

x=0:y=)"= )
Px=0/Po

! /
x=s5:Y =p/m
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one gets

Nipp = —2 ) 22
Kn11SC7 ()

It must be pointed out that by a transfer through a
stagnant film in the Knudsen region there must be an
increase of the pressure at x = 0 to neutralize the flux
Ni,» which is a fundamental fact. Then this gradient is
taken into account by the integration, too. The result of
Eq. (22) holds the form of a known approximation for
ordinary diffusion, but the principal origin is different
(see Section 6, t00).

3. Mass transfer in the transition region

In the transition region diffusion (ordinary and
pressure diffusion) and molecular motion superimpose.
The formal disposition is known [2]. Beyond the indi-
cated concentration gradient, a pressure gradient will be
formed, like it was shown in the foregoing section for the
molecular motion and for the boundary between con-
tinuum- and transition region. This fact imposes that
beyond the fluxes on account of the concentration
gradient — dLIfI (ordinary diffusion) and NK’M (molecular
motion term ~ Vy) — fluxes on account of the pressure
gradient — N, (pressure diffusion) and N, (molecular
motion term ~ Vp) are generated. Moreover the viscous
flow N, is to be superimposed. For this case two model-
concepts have the same chance to be correct. They are
identical in the continuum region and in the Knudsen
region, but they are different in the transition region
[4,5]. Tt is to prove which one is able to describe the
effects in the transition region correctly.

(1) The fluxes Ndf’f), and NKH, are serially connected as
well as the fluxes NS’}I and N,({;), The two compensation
fluxes in both ways are connected parallel, cf. Fig. 3. The
total fluxes in this connection are given by

Npi = Ng% + ngp:

1 —p(1 +a) 1 }1(0)
= — + - |pV
[ Dy Din 1 p pYy

1—y(1+a®) 1 }l(c)
- + -y 23
[ HIDIZ DK/1,1 p VP ( )

with

o) = ]YD‘Z _ —Dxu : o? = NDZ (&) (DKn‘Z)
ND,I DKn,I ND 1 Wy DKn‘]
and in an analogous manner for component 2.

If viscous, i.e. frictional compensation flows are in-
troduced like Eq. (3) in both diffusion flows:

Nl = Np) + N = Npi (1 + ) = —Du, ( 157 ) vp

vis

ordinary diffusion Nd‘f i | molecular motion NyD,i
Y
Jd\f i Nkn,i

\ .
\ compensanon flow] Np,i
—_— - - o >

ViZ Ndli,\

pressure diffusion| Nd|f| molecular motion NBJ
P
it Nkn,i

\

\ compensatlon flow|
Yi z Ndlf,\

Fig. 3. Model for the diffusive fluxes in serial connection.

NP = NI + N = N (1 + o) = —Dyq ( ;)va
then a pressure gradient Vp’ is generated in the flow of
the ordinary diffusion N\, ~ Vy. But this pressure
gradient cannot be disintegrated because this model does
not provide a flow ~ Vp for this kind of ordinary dif-
fusion. The serial connectlon of the ﬂuxes Ngfl and N2,
as well as of the fluxes Ndlf and NK,” seems plausible,
because only the fluxes with the same gradient are
superimposed in the well-known manner. Nevertheless,
this consideration by introduction of a viscous com-
pensation flow shows that this model of serial connec-
tion is unable to describe the effects in a physically
correct way.

(2) In the second model the diffusion fluxes Néﬁr), and
N lf are connected parallel, as well as the fluxes N,?,,), and

NK,“- of the molecular motion, cf. Fig. 4. The mass
transfer by this connection is described by the equations

. 1 1
ND.1:|:~ +

Nairg Nga

B (c) [ I—y(l1+40a)
P/ | DipVy + DiopyVp
1 -1
e 24
D1 (pVy +pr)} @)
with
_ DKn.Z va _ _DKn.Z pv.y - (1 _y)vp

DKn.l VPI DKn.l PVJ’+pr

and analogous for component 2.

ordinary diffusion| molecular motion
) .y
St Nkn,i
\ pressure diffusion molecular motion
. GP
i NKn,i

\
\ \
\ compery\sation flow]
— : Y R
vi(ZNGi +ENGy,)

NDi

Fig. 4. Model for the diffusive fluxes in parallel connection.
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In the continuum region, Kn < 0.01, the pressure
gradient is to be neglected, as shown above. But in the
transition — and in the Knudsen region there arises a
pressure gradient, which results in a viscous flow, a
molecular motion and a pressure diffusion. At first the
pressure gradient is unknown and is to be calculated for
the conditions of the different systems, e.g. for an open
or closed system, for countercurrent diffusion or for
diffusion through a stagnant film.

The frictional compensation flow Nyis in this model
also includes the compensation flow of the ordinary and
the pressure diffusion. This flow will be calculated with
Eq. (3) again

. < (v r(y \ \ ¢
Ny = N‘g)if{1 n Né'if),z + Né{’f).l “'Nc(l]i?t‘),z = —Dy;s (;) Vp.

(25)
With Eq. (25) we can write for Eq. (24):
. c 1
=)
P/ | DupVy + i DiyVp + DyisyVp
1 -1
+— . 26
D1 (pVy +pr)} 26)

It is easy to prove the compatibility of the Egs. (24) and
(26).

The gradient Vp can be determinated as follows: The
concentration gradient can be considered as the sum of
the gradient owning to the collisions of the molecules
with each other and to the collisions of the molecules
with the wall of the pores

Vy = vy|mo]cc + vy|we:1]l'

In the continuum region the mass transfer N, is pro-
duced by Vy|,,.eco in the Knudsen region N, ; by V|, .-
In the continuum region the gradient Vp causes the
pressure diffusion and the viscous flow, in the Knudsen
region the molecular motion term N,’;n, 1%

. c c
Nair1 = —Dna (;)pv.ylmolec — (D12 + Dyis) (l—))yvl%

(27)

. C C
Ninit = —Dia (;)Pvﬂwm — Dgan ([;)J’VP- (28)

With the ratio of the gradient ¥ = (pVy/(1 — y)Vp) i.e.
for the continuum region ¥ = 9| ... due Eq. (5) and for
the Knudsen region ¢ = 9|, due Eq. (17) the Egs. (27)

wall

and (28) can be resolved for Vy|, ... and for Vy| ...
resp.:

¢ —Nait

- \% molec — ' i ’ 29
(P)p Vo Dz + (i Dix + Dyis) 15 57 @)

1=y Vlmotec

c —Ng,
(;)pv)}‘wa]l = fe . (30)

Diuy | 14+ 7= 17—

wall

The addition of the both gradients results in the total
gradient of the concentration [2]:

(g)pw - (;) (Wy|molec + PV ) (31)

In this addition it has to be regarded, that the fluxes
Ngir and Ng,; must be identical (as by a serial connec-
tion): Ngir; = Nk,; =Np,;. So we get

C
(—)pVy
p
1 1

= _ND,I ; +
[Dn+<ﬂan+Dws>m;,m P (—

1=y 9lyan

(32)

Eq. (32) is an universal equation to calculate the diffu-
sive flux Nj; by different values of ¥ due to the Eq. (5)
and (17), respectively, of the separation factor o in these
equations.

For the mass transfer through a stagnant film (one-
side diffusion) it is to set ND,z =0, « =0. We get

\Y . 1 Dyis 1
(f)u:—Nm(— + ) (33)
p)l—y Dy wyDia + Dyis  Diag

In the case of a compensation flow without friction there
is Dy — oo and we obtain the known equation (note:
because vp = 0: P=Do: ﬁwall = 00, ﬁmolec/Dvis = 1/D12)

c . -y 1 )
oy =N + 4 34
(P)p Y D'l( Dy Dgy (34)

The ratio of the gradient for the whole range of Knud-

sen-numbers will be formed by superimposing 9| ;.. due
to Eq. (5) and 9|, due to Eq. (17):
pVy
ﬁzﬁmoec+19wzi =71 _ o
| 1 | 1l (1 _ y)vp
Du 1—y(14+a) (1=y)p=2—ya
Kn,1 (35)

- Dy (1 =y)(1+a) (1 —y)(M—i—oc)'

Dgn 1
In the case of the diffusion through a stagnant film there
sa=0
Dys
Y=—"+1. 36
Do, (36)
The development of the pressure along the diffusion

path will be received by integration of Eq. (35) (cf. Eq.
(10)):



W. Kast | International Journal of Heat and Mass Transfer 44 (2001) 47174724 4723

Y, L\ /-1
P I—y pP=—n
For the pressure on the side of the generation of the

diffusive flux, e.g. by evaporation, drying — x =0,
D = Px=0, P1 = p| — We get

Do 0 7p/ Diy/Dyis
(st ) -
Po Dx=0 — D1

By integration of Eq. (33) for the diffusive flux the re-
lation p = f(y) according to Eq. (37) has to be taken
into account. This equation can be integrated only nu-
merically. However the error by the integration will be
small, if we regard the term yy, to be a constant with a
mean value y = ()’ +”). Then for the flux by diffusive
mass transfer through a stagnant film with 9 according
to Eq. (36) we obtain

1—y 19
(1—y”) _1}

Dy D, ™
X { : + =2 ] . (39)
Dyis +yD1y - Dint

Diyco

ND.I = 19

The limiting values of Eq. (39) in the continuum region
(Dvis > DKn‘i > D127 79 - OO) are

Dlzco n 1 *y,

S =y (cf. Eq. (13)) (40)

and in the Knudsen region (Dyis < Dx,; < Di2,9 = 1)

7DK)1‘ICO y” 7)/
s -y

Np,1 (cf. Eq. (22)). (41)
The concentrations ) and )’ are to be set
Y =pi/po,y" = p|/po i.e. at first the pressure rise p,—g
by Eq. (38) must be calculated.

For the diffusive flux without a viscous compensation
flow, i.e. frictionless, we get Np o by integration of Eq.
(34)

Discy , 14 (Dgai/Dri2)(1 =)

1+ (D1 /Di2)(1 = 35)

Npijo = In (42)
This equation includes only the diffusion slip in the
transition region. In Fig. 5 the diffusive flux Np, in a
dimensionless form (Np,;s/Diaco) (1/¥ — ¥') for different
vapor pressures p/, and the ratio ¢ are represented. Fig.
6 shows the pressure rise p,—o in the dimensionless form
Px=0 — Po/P{ — -

In the transition region there is a continuous change-
over from the frictionless compensation flow of
the continuum region (Vp = 0) to the basically given
pressure rise in the Knudsen region as illustrated in
Figs. 5 and 6.

With these considerations on one-side mass transfer
through a stagnant film — as it occurs in evaporation,

40 10 1 «n 0.1 0,01
0

Fig. 5. Dimensionless ratio of the gradients 9 = (pVy/
(1 —=»)Vp), dimensionless diffusion flux (NDAls/Dlzc(,)
(1/y5 —»') as function of the Knudsen number Kn, for the
diffusion H,O-vapor in a stagnant film (x=0) (py=
1 bar, p| =0, Dys = 172 x 104> (p/po) m’ /s, ~ Dip =25, 1 x
10°(py/p) m?/s, Diy1 = 198 -d, (m?/s), Dg,» = 156 - d, (m?*/s),
Ay =40 x 107 m).

Continuum-
region

Knudsen - region

| § |
0,0+

40 10 1 0,1 0,01

Transition - region

Fig. 6. Dimensionless pressure rise p,—o — po/p| — p| as func-
tion of Kny for the example in Fig. 5.

drying, adsorption, catalytically processes and so on — it
is demonstrated that only the so-called model with
parallel connection, Fig. 4, is able to give physically
plausible results.

Egs. (26), (32), (33) and their integration — numerical
or analytical (Eq. (39)) — include the effects of pressure
diffusion, diffusion slip and slip flow in an implicate but
distinct manner.

4. The influence of pressure diffusion

The influence of pressure diffusion in the transition
region on the pressure rise p,—o and on the diffusive flux
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100
1 a=0
J 10° bar p"=
2 80 ' 0,01 bar
S
60 0.01 bar 0,7 bar
40 1,0 bar
201 M =0
0
40 0,01 Kn,
p," = 1,0 bar 0
-20 =0,7 bar
=0,1bar
1 =0,01 bar
40 =1E-5 bar W, = 1

Fig. 7. Influence of the pressure diffusion on the diffusive flux in
the transition region for the limiting cases g, =1 and p; =0
compared with the numerical integration of Eq. (33):

Notle 1 or—
A% = [ 22Im=lor=0 1) o 100.
Npijy,

Np, can easily be derived if we set 1. u, =0, i.e. the
pressure diffusion is neglected, and 2. u, =1, ie. the
pressure diffusion is taken into account with its maximal
value. The deviations of these limiting cases from the
exact values gained by the numerical integration of Eq.
(33) are calculated for the example of Fig. 5 and showed
in Fig. 7. As one can see the pressure diffusion is only to
be taken into consideration in the transition region, but
in this region its influence is significant in certain cases.

5. Comparison of the frictional and the frictionless
disposition

Without a viscous compensation flow, i.e. Vp = 0, in
case of o =0, we have obtained for the diffusive flux
Npip, Eq. (42) with the limiting equation of the con-
tinuum region
D]zC() 1 *y’

In with y =21 (43)

Np 1o =
D,1/0 p =y P

identical Eq. (40), and for the Knudsen region
N D, n,1C " /
NDJ\OZKT'IO o — ) (44)

Eq. (44) is identical Eq. (41), too. This can be proved, if
we set ' = py/p—o and pi—o = po + p| — P} (Eq. 21)):

y// _ y/
y(,)l_y,: l_y//’ (45)
This identity must be demanded for the Knudsen region,
because there is only molecular motion and not any
other flow.

1 N
D,
304 A(p) _ ) 10 1
D1 / p," =0,9 bar
20 =0,7 bar
=0,5 bar
104
=0,3 bar
0 T T
4 1 0,1 0,01
Kn,
-104
p," =0,01 bar
20 = 0,1bar

Fig. 8. Deviations between the description of the diffusive
fluxes by a viscous frictional flow and by a frictionless flow.

In Fig. 8 the deviations of Np 0, Eq. (42), to Np;, by
numerical integration of Eq. (33) with Eq. (37), in the
form Np_uo/Nm — 1 are shown. In the continuum and
Knudsen region there are no deviations, like it has to be.
Only in the transition region deviations will be formed.
Positive, if the reduction effect of the viscous flow on
NDJ is more considerable than the increasing effect of
pressure diffusion. Negative, if the effect of the missing
pressure diffusion ND‘”O is more intense than the effect of
the frictionless flow.

6. Final remarks

It has to be pointed out that the model discussed in
this paper is only a concept to calculate certain effects of
mass transfer and not the absolute physical reality — like
all models for physical and other processes.
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